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Abstract: As the number of old bridges increases worldwide, economic and maintenance issues are 
emerging due to the deterioration of these structures. In general, the conventional approach for the 
safety assessment of existing bridges is based on performing structural analysis and safety verifica-
tions, starting from the material properties obtained from experimental tests. In particular, for some 
old bridges, the design documents are not computerized or stored, so many additional field tests 
may be required due to the uncertainty of information. In this paper, we proposed a framework that 
can estimate the load-carrying capacity of old bridges for which the design documents are absent, 
and field tests are not used in this process. The framework relies on computational design strength 
and features procedures for calculating calibration factors to reflect the current conditions. With 
only limited information available with regard to bridges, the key to this study is its use of AI tech-
nology. First, the relationship between externally measurable geometric characteristics and the de-
sign strength was established based on 124 design documents. In this process, we compared the 
performance of five regression algorithms: multiple linear regression (MLR), decision tree (DT), 
boosting tree (BT), support vector machine (SVM), and Gaussian process regression (GPR). It was 
confirmed that it is possible to predict the design strength using GPR, with an error rate of 0.3%. 
Second, an ANN model was built to estimate the calibration factor as a condition assessment of 82 
in-service bridges. The ANN was determined using optimal parameters with a mean squared error 
(MSE) of 0.008. Each type of AI used in the proposed framework showed a high predictive perfor-
mance, implying that it can be used to evaluate the load-carrying capacity of bridges without a 
design document. 
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1. Introduction 
The deterioration of bridge structures is a worldwide problem affecting many devel-

oped and developing countries. In old bridges, the loss of strength and serviceability in-
creases gradually due to the effects of weather conditions as well as the effects of loads 
and vibrations. In particular, for concrete bridges, damage such as cracks, efflorescence, 
water leaks, peeling, and exfoliation can occur due to certain material characteristics and 
environmental factors. 

Bridge damage can cause indirect losses due to network disruptions as well as direct 
financial losses due to the repair interventions that must be performed to restore the load-
carrying capacity and ensure traffic safety [1]. In Japan, the aging of many concrete 
bridges built during a period of rapid economic growth, from the 1950s to the 1970s, is 
apparent [2]. Moreover, according to an ASCE report, 40% of the 614,387 bridges in the 
United States are over 50 years old, and 56,007, or 9.7%, of bridges in the nation are clas-
sified as ‘structurally deficient’; the nation’s backlog for required bridge rehabilitation is 
estimated at USD 123 billion [3]. In addition, the average lifespan of bridges continues to 
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increase. Therefore, it is important to implement a reasonable management strategy to 
maintain safe performance within acceptable levels during the life cycle of a bridge [4]. 
For proper structural maintenance, accurate evaluations of the current conditions and 
structural performance capabilities of structures in service are required [5].  

In general, to evaluate the structural performance of bridges, the AASHTO Manual 
for Bridge Evaluation (MBE) estimates the load-carrying capacity based on reliability [6]. 
This manual is used to calculate the maximum live load that can be applied to a structure, 
and, for this purpose, the structural capacity reflecting the current condition of the bridge 
being examined is required. In many previous studies, calculation methods were used to 
implement actual bridge models by integrating the on-site damage inspection results of 
structures. Santarsiero et al. [7] presented a methodology to evaluate the deterioration of 
bridges using the condition index. Domenico et al. [8] undertook visual inspections, defect 
detection assessments, and an in situ experimental campaign to reduce the uncertainly 
associated with estimations of the material properties and attain accurate estimations of 
the structural capacities of bridges. An FE analysis, which reflects the estimated material 
properties based on a field test, was updated based on an additional static load test, ena-
bling highly reliable safety evaluations. Moreover, several authors argued that the method 
of updating the material properties, boundary conditions, and complex actions using field 
test data in the FE model, which was created for the purpose of a bridge evaluation, is 
highly effective in reflecting the current condition [9–12]. 

However, these studies relied on data specified in the design documents. In some 
cases, the design documentation created at the time of construction of old bridges is lack-
ing, has been improperly stored, and/or contains inconsistencies. Due to these issues, there 
are not enough records available to explain the design and construction of old bridges 
[13,14]. Some authors discussed the evaluations of the load-carrying capacity of a bridge 
without a design plan. Huang [15] and Huang and Shenton [16] developed a method to 
evaluate the load-carrying capacity of RC bridges without as-built information. Reinforc-
ing bars embedded in concrete were estimated using non-destructive techniques such as 
a Schmidt hammer, and the bridge capacity was calculated by a cross-sectional analysis 
using the estimated rebars. Similarly, Aguilar et al. [17] performed a static load test and 
used a non-destructive material evaluation technique to evaluate the load-carrying capac-
ity of a bridge with limited design documents, by calculating the structure’s capacity 
based on the explored reinforcing bar. Furthermore, Bargheri et al. [13] established a cor-
relation between the geometric and modal characteristics established in advance, based 
on the FE analysis, to determine the structural capacity of an RC slab bridge without a 
structural plan and the uncertainty associated with the interior of the bridge according to 
the mode frequency. 

With regard to structures, several studies have demonstrated that AI technology can 
be a successful approach for estimating target values based on limited information. 
Shakya et al. [18] obtained a high prediction accuracy by detecting the amount of damage 
to the structural and non-structural elements of various structures using AI techniques. 
The present study focuses on evaluating the load-carrying capacities of bridges with lim-
ited design documentation. Generally, the results of load-carrying capacity evaluations of 
bridges without design documentation were verified based on field tests and truck pass 
tests in prior studies [8–16,19]. However, these procedures are costly and time-consuming, 
and they sometimes cause large-scale traffic closures [19]. Therefore, the purpose of this 
study is to propose a load-carrying capacity evaluation method that excludes all test pro-
cedures performed on-site for old bridges without design documents. In particular, 
among the various bridge types, this study focuses on PSC girder bridges, which have 
been widely used since the 1950s. Two tasks are performed to propose a framework for 
economical and efficient load-carrying capacity evaluations of target bridges using AI 
technology. The first is to estimate the structural capacity of a bridge without a design 
document, and the second is to calculate a factor that compensates for the gap between 
the structural capacity of the estimated bridge and that of the actual bridge, by reflecting 



Appl. Sci. 2023, 13, 1283 3 of 18 
 

the bridge condition without a field test. In Section 2, the background of the existing load-
carrying capacity evaluations is introduced, and, in Section 3, the methodology proposed 
in this paper is explained in detail. Then, we perform each task and confirm that the pro-
posed method can be used to evaluate the load-carrying capacity. 

2. Background of Load-Carrying Capacity Evaluations 
An evaluation of the load-carrying capacity of a bridge is part of the bridge evalua-

tion process. Such assessments quantitatively evaluate the live-load resistance that the 
bridge can safely support and can be used as basic data for the planning and maintenance 
of repair and reinforcement work. In the United States AASHTO Bridge Evaluation Man-
ual, it is recommended to update the rating factor (RF) to evaluate the load-carrying ca-
pacity, such that it reflects the condition of the bridge [6]. The RF of the bridge is defined 
as shown in Equation (1). 𝑅𝐹 = 𝐶 − 𝛾஽஼𝐷𝐶 − 𝛾஽ௐ𝐷𝑊𝛾௅௅𝐿𝐿(1 + 𝐼𝑀)  (1)

where C represents the current load-carrying capacity of the bridge member; DC and DW 
are the dead load effect due to the structural components or wearing surface and utilities, 
respectively; LL is the live load; and IM is the allowance of dynamic load. 𝛾஽஼, 𝛾஽ௐ, and 𝛾௅௅ represent the load factors in each load type. In order for RF to be calculated, it is very 
important to calculate the structural capacity (C) that reflects the current condition. C de-
fined by Equation (2): 𝐶 = 𝜙௖𝜙௦𝜙𝑅௡ (2)

where 𝑅௡, the nominal capacity of the member, is calculated based on the design plan. 𝜙௖, the condition factor, reflects the decrease in the nominal resistance due to structural 
deterioration. 𝜙௦, which is the system factor, is a factor of the nominal resistance that re-
flects the redundancy level of the entire deck system. 𝜙 is the resistance factor based on 
the construction materials.  

As mentioned above, the evaluation of the nominal capacity is performed by calibrat-
ing the condition, system, and material components. These calibrations are conducted via 
engineers’ judgments based on the condition rating system, which relies on a visual in-
spection. On the other hand, it is argued that this calculation approach often underesti-
mates the safe load-carrying capacities of bridges [20,21]. Accordingly, in order to calcu-
late the precise structural capacity, as shown in Figure 1, it is important to identify the 
degree of deterioration through a field test along with condition evaluations. Field tests 
include examining the material strength, reinforcement condition, bearing plate condi-
tion, chloride content, exposure level, and the corrosion of the reinforcing bars. The re-
sponse comparison through a static load test clearly reflects the uncertainty of the infor-
mation about the bridge. However, these field trials and proof-loading tests require large-
scale traffic closures that frequently prevent their implementation, especially on highways 
or bridges. For this reason, for many bridges, it is difficult to evaluate the load capacity as 
reflected in the current state. 
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Figure 1. Procedure of determining load-carrying capacity. 

3. Methodology of Load-Carrying Capacity Evaluation 
In this paper, we propose a framework to which AI technology can be applied to 

evaluate the load-carrying capacity of bridges in their current state for bridges without 
design documents. In the proposed framework, the structural capacity is calculated in two 
steps. In the first step, the design strength of the girders is predicted based on the design 
document of the bridge in service where the design documents are sufficient. Given that 
all existing bridges are designed based on a relevant design code, it is natural to have a 
pattern of geometric characteristics determined for the expected load and the design 
strength of the girders. Using these characteristics, the relationship between the geometric 
characteristics of the structures and the design strength is studied based on machine learn-
ing. In this process, it is important to consider the geometrical parameters that can be 
measured for bridges without design documents. 

In the second step, the calibration factor to be applied to the previously calculated 
design strength of the girders is calculated to obtain the structural capacity reflecting the 
condition of the bridge based on the safety-diagnosis history. ANN is used to estimate the 
correction factor, and parameters that can reflect 𝜙,  𝜙௖, and 𝜙௦ of the existing AASHTO 
are adopted as input parameters of ANN. A bridge that deteriorates due to aging pro-
duces different results from the responses calculated through the design information due 
to differences in the material strength, condition of the bridge bearings, cracks, and dam-
age. The deflection amount has been adopted as an index that can indicate the gap be-
tween the calculated design strength and the actual bridge strength. For a simply sup-
ported beam-type bridge, the deflection is calculated with Equation (3), and the load (P) 
and stiffness (EI) have a proportional relationship. In the AI learning process, the bridge 
length is included as an input parameter. Since the basis is that the bridge in service is 
designed to satisfy serviceability and structural capacity, deflection over the expected de-
flection can be regarded as strength degradation. The ratio of the calculated deflection 
amount and the actual deflection response at the expected load means that it is possible 
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to correct the gap between the elastic modulus of the material used and the secondary 
moment of sections due to cracks and damage. 𝛿 = 𝑃𝐿ଷ48𝐸𝐼 (3)

Learning using an artificial neural network was utilized, so the response ratio, which 
is the ratio of the calculated deflection of the bridge to the actual measured deflection of 
the bridge, could be predicted according to the bridge specifications and condition evalu-
ation results shown in the bridge inspection history. 𝐶 = 𝐶ᇱ ൈ 1𝐾 (4)

4. Prediction of Girder Design Strength for a Regression Algorithm 
To estimate the design strength of the girders, the design documents of 124 PSC 

girder bridges were obtained. The parameters for predicting the design strength should 
be predictable even in the absence of design documentation. Figure 2 shows one span of 
the bridge. Six geometric properties that can be visually measured and that can potentially 
affect the design strength of the bridge were selected as the input parameters. These are 
the girder length, bridge width, slab thickness, number of girders, girder spacing, and the 
girder height. Figure 3 shows the distribution of the considered parameters. Table 1 sum-
marizes the ranges and statistical characteristics of the individual parameters. 

 

Figure 2. Input parameters. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

 
(g) 

Figure 3. Distribution of data information. (a) Length of girder. (b) Width of bridge. (c) Thickness 
of slab. (d) Number of girders. (e) Space of girder. (f) Hight of girder. (g) Design strength. 

Table 1. Statical properties of bridge design document data. 

Input Data 
𝑳𝒈𝒊𝒓𝒅𝒆𝒓 𝑾𝒃𝒓𝒊𝒅𝒈𝒆 𝒕𝒔𝒍𝒂𝒃 𝑵𝒈𝒊𝒓𝒅𝒆𝒓 𝑺𝒈𝒊𝒓𝒅𝒆𝒓 𝑯𝒈𝒊𝒓𝒅𝒆𝒓 𝝓𝑴𝒏 
(mm) (mm) (mm) - (mm) (mm) (kN m) 

Max. 50 37,000 270 16 3090 2600 41,261 
Ave. 40 16,199 241 4 2690 2013 26,380 
Min. 27 10,000 240 4 2000 1100 11,880 

St. Dev. 6 6111 3 2 200 450 7800 

4.1. Introduction of Regression Algorithms 
Various regression algorithms can be used to establish a relationship between the 

design strength of a structure and a certain geometric parameter. The present study com-
pared the performances of models based on five popular algorithms: multiple linear re-
gression (MLR), decision tree (DT), boosting tree (BT), support vector machine (SVM), and 
Gaussian process regression (GPR). A description of each algorithm is as follows. 
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4.1.1. Multi-Linear Regression (MLR) 
The relationship predicted through a multiple linear regression analysis is expressed 

as a functional formula with arbitrary coefficients for a given independent parameter. As 
shown in Figure 4, the least squares method is used to ensure that the predicted result has 
the proper target value and high accuracy. Several studies have used the MLR technique 
considering the interaction effect to improve the accuracy of the simple multiple linear 
regression process [22,23]. In this study, a regression method that also considers the inter-
action effects is used to improve the prediction accuracy of linear regression. In addition 
to the weight of each parameter considering the main effects of the independent parame-
ters, a term that predicts the weights of the terms composed of the products between them 
was added and considered. 𝑦 = 𝑎଴ + 𝑎ଵ𝑥ଵ + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ + ⋯ + 𝑎௡𝑥௡ (linear regression) +𝑎ଵଶ𝑥ଵ𝑥ଶ + 𝑎ଵଷ𝑥ଵ𝑥ଷ + 𝑎௜௝𝑥௜𝑥௝ + ⋯ (interaction term) (5)

 

Figure 4. Multiple linear regression. 

4.1.2. Decision Tree (DT) 
A decision tree is a tree data structure that consists of nodes and branches at each 

node. The DT algorithm used for regression proceeds in a top-down fashion, finding the 
best branch in a greedy manner and dividing the branches. From among all independent 
variables 𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௣ and for all possible spilt points s, we choose j and s that minimize 
the SSE.  𝑅௔(𝑗, 𝑠) = ൛𝑋ห𝑋௝ < 𝑠ൟ 𝑎𝑛𝑑 𝑅ଶ(𝑗, 𝑠) = {𝑋|𝑋௝ ≥ 𝑠} (6)𝑆𝑆𝐸 = ෍ ൫𝑦௜ − 𝑦ොோభ൯ଶ௜:௫೔∈ோభ(௝,௦) + ෍ ൫𝑦௜ − 𝑦ොோమ൯ଶ௜:௫೔∈ோమ(௝,௦)  (7)

As mentioned above, each spilt point fits the regression model to the target variable 
according to whether the conditions for the independent variable are satisfied. Figure 5 
shows a schematic diagram of the decision tree. 

 
Figure 5. Decision tree. 
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4.1.3. Boosting Tree (BT) 
Boosting is one of the ways to improve predictions using the DT approach. Depend-

ing on the predicted results of the previous model, the importance of each of the inde-
pendent variables is determined, and weights are assigned to affect the next model. This 
is the process used to create new classification rules by focusing on misclassified data. 
Compared to DT, it has the advantage of low error but has the disadvantages of a slow 
speed and overfitting. 

4.1.4. Support Vector Machine (SVM) 
The method in which the support vector machine (SVM) is applied to the regression 

relies on the concept of having only a certain amount of margin on the predicted linear 
graph based on the relationship between the target value and the predicted value. The 
size of the margin may be increased to include all predicted data, and the least squares 
method is utilized as a performance function until the minimum size of the margin is ob-
tained. The method in which the support vector machine is applied to the regression is 
shown in Figure 6. 

 

Figure 6. Support vector machine. 

4.1.5. Gaussian Process Regression (GPR) 
Determining appropriate hyper-parameters for complex datasets is a difficult task. 

Accordingly, conventional regression algorithms determine parameters based on the 
prior experience of model characteristics and shapes. However, GPR has flexibility in re-
lation to this. It is devoted to a broad family of functions based on covariance functions. 
This has an advantage in that the accuracy of the estimation is very high because it can 
provide an uncertainty estimate along with the prediction. 

4.2. Performance of Regression Algorithms 
In general, the performance of the model is evaluated through the coefficient of de-

termination (𝑅ଶ). However, from a mathematical approach, the coefficient of determina-
tion increases as the number of independent parameters increases. Therefore, an adjusted 
coefficient of determination (𝑅௔ௗ௝ଶ ) that considers the number of independent parameters 
and the size of the dataset is used. 𝑅௔ௗ௝ଶ  is calculated by Equation (8). In addition, because 
the parameters used for the regression are not subject to a scaling process, it is difficult to 
intuitively evaluate the error obtained by subtracting the predicted value from the target. 
Therefore, the absolute percentage error (MAPE) was used, so the predicted error could 
be intuitively identified. 𝑅௔ௗ௝ଶ = 1 − [(1 − 𝑅ଶ)(𝑛 − 1)𝑛 − 𝑘 − 1 ] (8)

As shown in Figure 7 and Table 2, the error rates in all algorithms used were as low 
as 5% or less, and 𝑅௔ௗ௝ଶ  showed a high accuracy, of 0.9 or more. Among the algorithms 
used, the GPR algorithm showed the highest concordance rate with a coefficient of deter-
mination of 0.99, and the MAPE was the lowest at 0.3%. The prediction method through 
the GPR, which considers even potential errors based on reliability, is the most efficient, 
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and it is implied that the prediction of the design strength with this method is the most 
reliable method. 

  
(a) 

  
(b) 

  
(c) 
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(d) 

  
(e) 

Figure 7. Performance of each regression model. (a) MLR. (b) DT. (c) SVM. (d) BT. (e) GPR. 

Table 2. MAPE and 𝑅௔ௗ௝ଶ  results of five regression algorithms. 

 MLR DT SVM BT GPR 
MAPE 3.1% 2.3% 3.0% 4.5% 0.3% 𝑅௔ௗ௝ଶ  0.969 0.979 0.984 0.985 0.999 

5. Calibration of Structural Capacity 
5.1. Introduction of Bridge-Condition Rating System 

In order to predict the response ratio, which is the ratio of the calculated deflection 
and the measured deflection response, the safety-diagnosis history reports for multiple 
bridges were collected. Given that this study focuses on bridge girders, the scope of the 
collected condition evaluation consists of the condition evaluation items for girders and 
bridge bearings. As the collected safety-diagnosis reports are based on safety diagnoses 
performed in South Korea, the Korean condition evaluation rating system was intro-
duced. During the evaluation of the condition of the girders, the crack width, the amount 
of damage to the reinforcing bars, and, for PSC girders, the presence of filling defects and 
the corresponding chloride content are evaluated. In addition, bearings are divided into 
elastic bearings and steel bearings, cracks and shear deformation are evaluated, and the 
cracks, peeling, and exfoliation of the concrete supporting the bearings are evaluated. The 
aforementioned items do not require a separate field test; instead, only visual inspections 
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are required. Tables 3 and 4 show the damage status according to the condition evaluation 
grading system for the girders and bridge bearings [24]. 

Table 3. Condition rating system for girders. 

Condition 
Rating 

Girder Prestressing Tendon 
Crack 
Width 

Deterioration  
and Damage 

Tendon Exposure 
and Damage 

Cement Grout 
Filling Defect 

Sheath 
Damage 

A − No − No − No exposure − No filling defect − No 

B − Less than 0.2 
mm 

− Surface damage area 
less than 2% 

− Exposure (1) − Filling defect − Damage 
(5) 

C − 0.2~0.3 mm 

− Surface damage area 
2~10% 

− Over than 2% of rebar 
corrosion area 

− Surface corro-
sion (2) 

− Chloride content 
(4) 1.2~2.5 kg/m3 

on filling defect 

D − 0.3~0.5 mm 

− Over than 10% of sur-
face damage area 

− Over than 2% of rebar 
corrosion area 

− Corrosion (3) 
with loss of 
area 

− Chloride content 
over than 2.5 
kg/m3 on filling 
defect 

E − More than 0.5 
mm 

− Degradation of mem-
ber stability due to se-
vere damage at end 
concrete or anchorage 
zone 

− Rupture of ten-
don 

(1) Exposure: state where strand(s) not covered due to grout filling defect. (2) Surface corrosion: 
state of rust on the strand(s) surface. (3) Corrosion: state of the cross-section loss by progressive 
surface corrosion, local corrosion, etc. (4) Chloride content: based on total chloride ion content. (5) 
Damage: leakage, efflorescence, fracture, etc. 

Table 4. Condition grading system for bearing plates. 

Condition 
Rating 

Bearing Plate  
Elastomeric Bearing Plate Steel Bearing Plate Support Concrete 

A − Good − Good − Good 

B 
− Light deterioration such as 

microcracks 

− Exterior paint peeling and cor-
rosion 

− Paint discoloration, dust accu-
mulation 

− Damage such as partial 
peeling and dropping 

C 

− Side swelling 
− Shear deformation less than 

0.3 times the thickness of the 
bearing 

− Corrosion of sliding plate 
− Partial deformation, breakage 

and loosening of anchorage 
device 

− Cracks of 0.3 mm or more in 
the supporting concrete 

− Decreased support cross-
section due to damage such 
as peeling and dropping, 
functional impairment 

D 

− Rubber material damage, 
step difference, and deepen-
ing of cracks 

− Shear deformation more than 
0.3 times the thickness of the 
bearing 

− The floating part is less than 
one-half of the total area 
without the support being in 

− Malfunction of bearing stretch-
ing due to corrosion of the 
bearing body  

− Damage to the bearing body 
− The floating part is less than 

one-half of the total area with-
out the support being in close 
contact 

− There is a possibility of 
breakage of the supporting 
concrete and the possibility 
of falling off and subsidence 
of the bearing due to the 
lower cavity 
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close contact 
− Poor stretching function of 

the support 

E 

− Damage to bearing body and 
girder due to poor bearing 
stretching function 

− More than one-half of the to-
tal area of the floating part 
without the support being in 
close contact 

− Damage to main members 
such as girder due to poor 
stretching function of the bear-
ing 

− More than one-half of the total 
area of the floating part with-
out the support being in close 
contact 

− Inoperable condition 

 

5.2. Data Collection and Driving 
The basic information about the bridges and response ratios were obtained from 82 

safety-diagnosis reports. In order to evaluate the condition of each bridge at a level ame-
nable to visual inspections, the data pertaining to the specifications and loads, such as the 
bridge width, bridge length, number of lanes, service period, and design live load, as well 
as the condition of the girders and bearings that may indicate damage due to deteriora-
tion, are obtained. The specifications, load, and condition assessment results were 
adopted as input values. Table 5 summarizes the ranges and statistical characteristics of 
the individual parameters and response ratios. 

Table 5. Statical properties of bridge information from safety-diagnosis reports. 

Input Output 

Range Width Length Number of 
Lanes 

Period Design 
Load 

Girder Con-
dition 

Bearing 
Plate Condi-

tion 

Response 
Ratio 

Min. 6 12 1 1 DB-13.5 D D 0.49 
Max. 40 1336 8 34 DB-24 A A 1.51 

The parameters representing the state are data with classes from A to E, which were 
normalized to numeric data between 0 and 1 to enable learning. The data distribution of 
the input parameters is shown in Figure 8. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 8. Distribution of input and target parameters. (a) Input parameter 1. (b) Input parameter 2. 
(c) Input parameter 3. (d) Input parameter 4. (e) Input parameter 5. (f) Input parameter 6. (g) Input 
parameter 7. (h) Target. 

5.3. Prediction of Response Ratio Using ANN 
In this section, an artificial neural network (ANN) model that can predict the re-

sponse ratio based on the bridge information and condition evaluation results in the di-
agnosis report was developed. 

An ANN is based on a feed-forward backpropagation (BPP) algorithm, so the pre-
dicted value reaches the target value. The ANN model consists of an input layer, a hidden 
layer, and an output layer, and each layer is connected by weights. The provided input 
values are propagated to the output layer through the hidden layer, and the calculated 
result value is displayed in the output layer. This process is called a forward propagation 
process, and the resulting value output through forward propagation represents the error 
from the provided target value to evaluate the model’s performance. At this time, the cal-
culated error is propagated in the reverse direction, and the weights connected between 
each layer are adjusted. This process is called backpropagation, and the forward propa-
gation and backpropagation processes are repeated, so the error converges to zero. 

In order to model an optimal ANN, which is essential, various hyper-parameters, 
such as a training algorithm, an optimizer, a performance function, the number of hidden 
layers, and the number of nodes in the hidden layers, can be used [25]. According to 
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numerous previous studies using ANNs, the training algorithm in the BPP learning pro-
cess shows a low level of error and a level of high precision when using the Levenberg–
Marquardt (LM) algorithm [26–29]. Thus, in this study, the ANN model was trained using 
the LM algorithm, and the gradient descent method (GDM) was adopted as an optimiza-
tion function to increase the training efficiency. The default setting of the training used by 
the LM algorithm in MATLAB is that the data are divided as follows: training (70%), val-
idation (15%), and testing (15%). For a better study of the insufficient data, k-fold cross-
validation is performed to evaluate model errors realistically and to prevent overfitting 
[25]. In this study, five-fold cross-validation was used to train 82 sets of data. Additionally, 
the mean squared error and sum of squares error functions were used as the criteria for 
stopping the network training process, and an appropriate performance evaluation func-
tion was determined by a trial-and-error method. 

When the BPP neural network is applied, the structure of the hidden layer largely 
determines the training speed and generalization ability [30]. Increasing the number of 
hidden layers is advantageous when desiring ANNs with a higher accuracy, but some-
times this causes overfitting problems [31]. Simulations according to the number of hid-
den layers have been performed by many scholars, which proved that the BPP neural 
network has a sufficient generalization ability with only a single hidden layer, when there 
are a sufficient number of neurons in the hidden layer [31–33]. Accordingly, the current 
ANN model was also developed into a structure using a single hidden layer. Then, a trial-
and-error process was used, so the optimal number of neurons could be specified using 
the trial-and-error method. Figure 9 shows a schematic diagram of the proposed neural 
network. 

 
Figure 9. Schematic diagram of ANN model. 

5.4. Optimization of the ANN Model and Performance Evaluation 
The parameters for optimizing the neural network to predict the response ratio of the 

bridge are the performance function and the number of neurons in the hidden layer, con-
sisting of two and eight parameters, respectively. The performance capabilities of 16 
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models, which combine the performance function and the number of neurons parameter 
in the hidden layer, were evaluated. The response ratio predicted by training each model 
is shown in Table 6, using the coefficient of determination (𝑅ଶ), which is an indicator that 
evaluates the accuracy compared to the target value, and the mean squared error (MSE), 
which evaluates the error with the target value. 

Table 6. Performance of ANN models. 

ANN Model 
Parameters Performance Evaluation 

Performance Function Number of Neurons 𝑹𝟐 MSE 
N2M 

MSE 

2 0.46 0.024 
N4M 4 0.64 0.014 
N6M 6 0.62 0.015 
N8M 8 0.55 0.022 

N10M 10 0.36 0.045 
N12M 12 0.26 0.065 
N14M 14 0.49 0.025 
N16M 16 0.18 0.091 
N18M 18 0.44 0.040 

Best model: N4M 0.64 0.014 
N2S 

SSE 

2 0.57 0.019 
N4S 4 0.57 0.025 
N6S 6 0.04 0.111 
N8S 8 0.22 0.156 

N10S 10 0.14 0.097 
N12S 12 0.82 0.008 
N14S 14 0.51 0.025 
N16S 16 0.19 0.117 
N18S 18 0.05 0.402 

Best model: N12S 0.82 0.008 

The model of N12S showed a result that has a higher performance compared to the 
other model structures, as shown in Table 6. Furthermore, the response ratios of N12S 
were similar to the target data, and the error ratio of N12S was also the highest for the 
prediction performance, as shown in Figure 10. Figure 11 presents the response ratio be-
tween the prediction and target data using a scatter plot. Overall, the prediction of N12S 
showed linear trends compared to the point for the target data. Some data estimated out-
liers other than the target data. Although it is possible to develop a model with a better 
learning performance by adjusting some hyperparameters, as shown in Figure 12, gener-
alization is limited due to overfitting. Therefore, the determined ANN model can be used 
to estimate the correction factor to calibrate the calculated design strength. 
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(a) (b) 

Figure 10. Performance of N12S model. (a) Comparison between target and prediction of N12S. (b) 
Error rate of N12S prediction. 

 

Figure 11. Comparison of target and prediction. 

 
Figure 12. Overfitting problem caused by developing high abstraction model. 
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6. Summary and Conclusions 
Load-carrying capacity evaluations of existing bridges are performed by calculating 

the structural capacity based on the design documents and updating the deterioration 
condition through field tests and static load tests using vehicles. However, for some old 
bridges, calculating the structural capacity is limited due to insufficient design planning. 
Additionally, field tests for bridges are time-consuming and expensive and sometimes 
require the closure of highways, causing a considerable amount of inconvenience. 

In this study, AI technology was used in two steps to overcome these limitations. (1) 
Based on numerous design documents, the relationship between the design strength and 
the geometrical characteristics of a bridge that can be visually inspected was determined. 
Among the five regression algorithms used, the GPR algorithm was adopted, making it 
possible to predict the design strength with an error rate of less than 0.4% using externally 
measurable parameters such as the bridge width, girder length, number of girders, girder 
spacing, girder height, and slab thickness. In order to calculate the structural capacity re-
flecting the current state of the bridge, the response ratio (calculated deflection of the 
bridge/measured deflection of the actual bridge) was used as a correction factor. (2) Based 
on the safety-diagnosis history for 82 bridges, training using an artificial neural network 
was conducted to predict the response ratio according to the structural geometry infor-
mation and the bridge-condition evaluation results. The response ratio, with an average 
error rate of about 5.4%, was predicted using the best ANN model, which was selected 
based on trial and error. 

In the framework proposed in this study, the regression algorithm used in the first 
step and the ANN model used in the second step can easily predict the target value. On 
the other hand, this is not a framework aimed at a precision safety diagnosis. For a careful 
and precise evaluation of a single bridge level, which cannot be replaced by AI proce-
dures, a sophisticated safety evaluation must be performed by conducting general field 
tests and finite element modeling. However, in order to perform a more reliable load-
carrying capacity evaluation with the proposed framework, it may be necessary to incor-
porate more design documents and more diverse safety-diagnosis data into the training 
process. 
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